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Abstract

A model for determining mass-radius variation for white dwarfs with a relativistic free
Fermi gas equation of state is investigated. Under this model, a density profile for a single
white dwarf is constructed. Both theoretical parameters from an SDSS white dwarf search
and observational parameters from Sirius B, 40 Eri B, Stein 2051, and Procyon B are found
to be consistent with the predictions of the model. The functional form of the mass-radius

relation is tested for both He/C/Mg and Fe core white dwarfs under relativistic,
non-relativistic and extremely-relativistic regimes. Ultimately, the Chandrasekhar mass is

obtained for He/C/Mg and Fe core WDs with values of 1.44± 2.22−10M� and
1.24± 2.22−10M� respectively.
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1. Introduction

Accurate understanding of the inner workings of white dwarf (WD) stars is of great
importance for many branches of astronomy, including galaxy formation, stellar evolu-
tion, and supernovae studies. Since over 95% of stars we observe will end their lives
as WDs[1], knowing how they function is crucial and by studying them, we are able to
study the history of the progenitor main sequence star. They are our testing grounds
for matter undergoing extreme physical processes near the end of a star’s lifetime. This
paper presents how their masses are related to their radii, which is considered the primary
focus of this work. Currently, complex models take into account factors such as atmo-
spheric conditions, magnetic fields, and pulsations. They accurately pinpoint the relation
between mass, radius, density, and temperature for sub-classes of WDs. This paper aims
to arrive at the same conclusions using a more basic degenerate free Fermi gas model.

WDs are formed when low to mid-mass (< 8M�) stars have used up all of their
nuclear fuel through fusion processes, converting H and He to C, Si and in some cases
Fe. Expanding by almost one hundred-fold, they may become an object known as a red
giant. They shed their outer layers which form planetary nebulae and leave behind their
cores. They must undergo mass-loss processes, such as stellar winds, to end up with
average masses of 0.6M�[1] equating to radii on scales similar to that of planet Earth.
With fusion out of the picture, WDs have no source of outward radiation pressure but due
to their mass they still feel inward gravitational forces. It can easily be seen that some
outward pressure is needed to balance this, or else all stars would inevitably collapse in
on themselves. The solution is that WDs are supported by electron degeneracy pressure.
Such a force stops free electrons from being compressed so close to nuclei that they would
occupy the same energy state and violate Pauli’s exclusion principle[2]. It has been
shown that electron degeneracy pressure could produce a strong enough repulsive force
to support a WD against the inwards gravitational force. As electrons are pushed closer
towards the nuclei, they fall into lower and lower energy levels, decreasing their energy
which, combined with what is known about their small radii, explains their observed low
luminosities (∼ 10−4 to 10−2L�)[3]. At this stage, the WDs have nothing else to do but
cool down until they end their lives as a theorised black dwarf. Due to the large thermal
timescales, this cooling process will last longer than the current age of the universe. A
brown dwarf, on the other hand, is different object that becomes non-relativistic too
early on in it’s evolution that it never fuses H. Characterised by their low luminosities
and spectral lines from their chemical composition, they differ greatly from white dwarfs
which have evolved past H fusion before collapse.

There is, however, a limit in which the degeneracy pressure breaks down and the mass
becomes too large to counteract. At these masses, the star will collapse further into a
neutron star or black hole. Chandrasekhar showed in the early 1930s that when an electron
degenerate gas is allowed to act relativistically, this mass limit is MCh = 1.44M�[4].
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Depending on the seed star and the environment history, varying core compositions can
be produced - in this paper both He/C/Mg and Fe core WDs are considered (from this
point onwards, He/C/Mg cores will be referred to as C cores due to their identical number
of electrons per nucleon). It is common to have a C-O core surrounded by a He envelope
which is also encapsulated by a thinner H envelope. Some observed WDs have a lower
radius than expected suggesting an Fe core. The ultimate fate of most WDs is to cool
slowly and redden for lengths of time longer than the current age of the universe. If
however, there is a companion star, then in this binary system the WD can accrete matter
until it exceeds the MCh and a type 1a supernova is produced. In some cases, after a failed
supernova explosion, some of the products can be reabsorbed, with Fe and other metals
accumulating in the core. Such a method is a recent proposal to the progenitor of the
Fe core WDs that we observe[5]. Other explanations include a binary system in which a
massive main sequence star is stripped of its outer layers to leave behind an Fe core.

In section 2, we present an overview of the methods used, both mathematical manip-
ulation and computational inputs, to allow the problem to be solved. Section 3 gives a
full discussion of the results and the physical interpretations of them. The findings will
be summarised in section 4, with any full derivations available to view in the appendices.

2. Methodology

The implementation of the method is twofold and documented within the following
sub-sections. Firstly a non-dimensionalisation of the differential equations relating pres-
sure, density, mass, and radius of a star into a form that could be used to solve the
problem computationally. This requires a definition of dimensionless variables and sub-
stitution technique to output two first order differential equations. Secondly, correct usage
and understanding of the Runge-Kutta algorithm is needed to integrate these differential
equations outwards and graphically present the solutions in such a way to verify the mass
and density of known WDs such as Sirius B. Our model is calculated on the assumption
of our WD, with its structure described by a relativistic free Fermi gas, being spheri-
cally symmetric and in hydrostatic equilibrium. The exact details of these methods are
discussed in the following subsections. However, before this, the Runge-Kutta numerical
method must be tested. This is done with a simple problem involving a hanging chain
undergoing simple harmonic motion, described by a set of differential equations. Using
the boundary conditions, the stable states of this system are found and compared to
documented values, confirming the validity of the numerical method to be used.
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2.1. Manipulation of Differential Equations

WD stars are complex objects with intrinsic properties that change on small scales from
the core to the surface, and as such must be described by differential rather than regular
linear equations. Mass is the main parameter determining the properties of stars and so
it is important to know how it changes within a given star. Variation in mass depends on
density, ρ, which in turn varies with pressure.

The first important differential equation is a statement of ρ = m
V

for infinitesimal
changes in mass, m, and radius, r:

dm

dr
= 4πr2ρ. (1)

Our second important differential equation determines the variation of density with radius
and is a function of mass, radius, and pressure, P:

dρ

dr
= −

(
dP

dρ

)−1
Gm

r2
ρ, (2)

where G is the gravitational constant. This differential in turn depends on another dif-
ferential involving pressure, a γ factor, and Ye, the number of electrons per nucleon. It is
called the equation of state and it can be shown (see Appendix A) that matter within a
WD can be well approximated as a relativistic free Fermi gas which takes the following
form:

dP

dρ
= Ye

mec
2

mp

γ

(
ρ

ρ0

)
, (3)

where mp and me are the masses of a proton and electron respectively and the gamma
function is given by,

γ(y) =
y

2
3

3(1 + y
2
3
)
1
2

. (4)

The manipulation of these equations for computational use involves the definition of
dimensionless quantities M, q, and x which act to non-dimensionalise mass, density, and
radius respectively:

M =
m

4
3
πR3

0ρ0
, (5)

q =
ρ

ρ0
, (6)

x =
r

R0

, (7)

such that these variables only vary from 0 to 1. This step is important as very large
or small numbers often cause the incorrect evaluation of equations within computational
programs.
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Upon substitution of (5) and (6) into (1) we arrive at the dimensionless differential
equation below.

dM

dx
= 3x2q (8)

Similarly, after substitution of (5), (6), and (7) into (2), rearrangement yields the
second important differential equation:

dq

dx
= −C qM

x2γ(q)
, (9)

where the constant C ≈ 0.86 and is given by,

C =
4πGR2

0ρ0mp

3Yemec2
. (10)

The two boxed equations (9) and (10) are the forms of the equations fed to the Runge-
Kutta algorithm detailed in the subsequent section.

2.2. Runge-Kutta Method

A fourth-order Runge-Kutta algorithm is used to solve equations (8) and (9). All
equations mentioned are input using a number of functions and the constant C is absorbed
by redefinition of the dimensionless variables. An additional boundary condition of ρ

ρ0
= 0

when x = 0 is added such that density is only non-zero for systems with a physical size.
Once this is established, the density profile can be plotted by cycling through the two
Ye values for Fe and C cores. In order to have a good balance between the required
high accuracy and the computational time, the number of iterations is set at N = 103

for medium densities and N = 106 for the lowest/highest densities where the boundary
conditions are approached. In order to reduce the error in the Runge-Kutta method
due to truncation, this number of iterations is chosen in accordance with guidance from
Numerical Methods MATH3018[6]. Boundary conditions for the Runge-Kutta algorithm
are set as x = 0, M = 0 and q = 1 and while the value of the density is larger than a very
small value (q > 10−10) the program is allowed to run. This small value is chosen such
that the second boundary condition of the density at the WD’s surface tending to zero is
implemented as 10−10 can be justifiably approximated as zero. The values of x and q are
recovered, and hence the relationship between radius and density plotted.

In addition to this density profile, a relationship between mass and radius for any
WD, constrained to this model’s assumptions, is then found. This is achieved by defining
a list of core densities, ρc, which could be looped over for each solution of the set of
equations. The boundary conditions remained the same apart from the change of density
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to q = ρc. When each core density calculation terminates, signalling the reaching of a
boundary condition, the final value is recorded and the respective mass added to an array
and converted to solar units. With these values, the variation of mass with radius can
finally be plotted. In order to verify the model with observation, data points for three WD
sources are overlaid, with their error bars indicating the success of the model to simulate
real physical conditions.

3. Results and Discussion

3.1. Relativistic Case

We set out to compare our model to data points for the four WDs listed in Table 1
in order to check its validity. There is limited documentation on the mass and radius
of white dwarfs as they are faint objects which requires them to be in a binary system
nearby to get independent parameters which is rare. However, Sirius B, 40 Eri B, Stein
2051, and Procyon B are well documented enough by man separate telescope observations
to have reliable masses/radii, and as such are perfect candidates.

White Dwarf Mass/M� Radius/R�

Sirius B 1.053±0.028 0.0074±0.0006

40 Eri B 0.48±0.02 0.0124±0.0005

Stein 2051 0.50±0.05 0.0115±0.00012

Procyon B 0.602±0.015 0.01234±0.00032

Table 1: Raw data for the mass and radius of the four WDs used in this project: Sirius B, 40
Eri B, Stein 2051, and Procyon B[7]. Solar masses/radii is the preferred unit of choice.

To begin with, the density (as the dimensionless quantity ρ
ρ0

) is plotted against radius

for a single WD - illustrated in Fig. 1. It is seen that the composition of the core makes a
small but noticeable change to the profile. Fe cores become less dense more quickly when
moving out radially from the centre, suggesting that more mass is enclosed within
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Figure 1: Density profile for an Fe and C core WD under a relativistic free Fermi gas equation
of state model.

a smaller radius. In normal stars this would result in a higher temperature however WD’s
temperature dependence, being degenerate, has no effect on any of the other physical
properties of the star. The density decays with radius faster for Fe core resulting in a
smaller final radius. The maximum radius allowed by our model is 0.0139 ± 2.22−10R�
for Fe cores and 0.0129± 2.22−10R� for C cores, signifying that the size of WDs is on the
same scale as the radius of planet Earth. The relationship between density and radius is
almost linear for the middle portion of the star whilst near the core and surface it drops
off faster following a power law.

Using the method illustrated in section 2.2 and further detailed in Appendix D, a plot
of mass against radius is constructed for both C and Fe core WDs. It is found that Sirius
B and Procyon B fitted best to the C core model whilst Stein 2051 and 40 Eri B fell
within a Fe core model (see Fig. 2). A possible explanation of these Fe core WDs are
that the objects are initially high mass stars fusing up to Fe in their cores which have
their outer shells stripped away by accretion from a binary companion star.
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Figure 2: Variation of WD mass with radius. Experimental data points with error bars for
known sources are overlaid showing their agreement with the theoretical model. The expected
Chandrasekhar mass of 1.44M� is recovered in the C core case. WD data points obtained from

Provencal et al.[7] and the project notes.[4] [8] [9]

Counterintuitively to regular stellar evolution, it is shown in Fig. 2 that as mass increases
WD radius decreases. This can be explained by a larger gravitational force compared
to a relatively equal electron degeneracy pressure, whereas in regular stars a larger mass
would create a larger radius. This process happens up until a certain point called the
Chandrasekhar mass limit, MCh, where the electron degeneracy pressure can no longer
withstand the gravitational force and the WD would trigger a type 1a supernova or
become a neutron star/black hole if its history always consisted of a mass, M > MCh.
The following paragraphs will detail the results displayed in Fig. 2 and discuss their
significance.

Because mass is the most important variable when determining physical effects in any
star, it has been plotted on the x-axis. In the low mass regime, the curve can be described
as ideal gas pressure dominated with a high power law representing the fast drop-off.
When the slope levels out at masses of ∼ 0.4M� we enter the near-relativistic degenerate
gas regime which has an equation of state giving gradient equal to −1

3
, P ∼ ρ5/3, and
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polytropic index of 3
2
. It is in this regime that that our data points lie which is expected

since the previously mentioned average mass is 0.6M� with most WDs falling between
0.5M� to 0.8M�. This curve deviates as we enter the extremely relativistic degenerate gas
regime where the radius decreases quickly to a critical mass, MCh. Including error analysis
of the Runge-Kutta method[10], it is found that the mass limit is 1.44 ± 2.22−10M� for
Fe core and 1.24± 2.22−10M� for C core WDs which is in agreement with theory[4]. This
result is very significant as it sets the maximum mass of WDs.

3.2 Extension

3.2.1 SDSS Data

In order to verify our model further, 20 WD data points are found in the SDSS Data
Release 1[11] and plotted alongside the observational data discussed previously. It can be
seen that considering the appropriate error bars, they fall within the constraints of the
model and act positively to re-enforce the validity of this study.

Figure 3: 20 additional data points from SDSS[11] included in the original plot to further
verify the model. Plotted in red are the 4 well documented WDs as comparison.
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3.2.2 Non-Relativistic and Extremely Relativistic Cases

For completeness, non-relativistic and extremely relativistic cases are investigated using
the methods outlined in Appendices B and C. As seen in Fig. 4, the extremely rela-
tivistic case (where velocity is equal to the speed of light) represents the limit at the
Chandrasekhar mass and is a straight vertical line at this value. The non-relativistic case
begins the same as the relativistic case at low masses. However, at 0.2M� it deviates
from the relativistic case and extends past the Chandrasekhar masses as it slowly tends
to zero. It can therefore be seen that the correct form of the gas to explain WDs is the
relativistic case.

Figure 4: Non-relativistic and extremely relativistic Fermi gas cases plotted alongside the
relativistic case. The best description of WDs comes from the relativistic case.
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3.3 Additional Research and Limitations

Further extensions of this project could involve probing the regime past the mass limit
where the star ceases to be a WD. Beyond the Chandrasekhar mass (shown in Fig. 2)
a WD has one of three possible outcomes[12] which all depend on the balance between
the degeneracy pressure, Pdeg, and the pressure due to gravity, Pg. The first of these
scenarios is accretion from a red giant/main sequence companion leading to a type 1a
supernova. High redshift measurements rely on this standardisable candle. Secondly,
the pressure balance could be disturbed by a collision between two nearby WDs, causing
the less massive one to be torn apart by tidal forces whilst the other collapses before
thermonuclear runaway. Lastly, He in the outer envelope of a C-O WD may suddenly
undergo fusion to C/O sending a shock wave which causes Pg > Pdeg and an ignition in
the core.

Taking into account the rotation of WDs may affect the observed mass-radius relation.
This effect, being a current area of research[13], is not fully understood but is believed to
be the cause of variation in luminosity and masses above the Chandrasekhar limit. Either
rigid (lower mass) or differential (higher mass) rotation could be investigated to see how
the mass-radius relation is altered. These bodies are known to pulsate in some cases -
changing the mass-radius relation further.

WD cooling processes and cosmochronology could also be investigated[14]. WDs tend
to have very long thermal timescales meaning their lifetimes are incredibly long. As there
is no fusion occurring, they slowly radiate away their energy and cool down to eventually
form an object known as a black dwarf. Black dwarfs have never been observed due to
this large thermal timescale, but it is well within the scope of a further research project to
study the effect of cooling on WDs. Additionally, the magnetic fields of such WDs have
been neglected here and undoubtedly change the mass/radius.

Another possible area of further research is the inclusion of a density function that
changes from core to surface to accurately describe the different regions in a WD. Besides
the core, there are also thin envelopes of H and He which alter the physics of the system.

This project is limited by the lack of observational data points to compare the model
to. Although the four chosen to investigate and the theoretically calculated mass/radii
values from SDSS had uncertainties that fell within the range of our model, pure first-hand
observationally confirmed masses/radii are missing. To thoroughly conclude the correct-
ness of this model, more comparisons are necessary. The assumptions that He/C/Mg core
WDs are identical because of their Ye values and that we can ignore the outer envelopes
are incorrect thus can be seen as limitations. One cannot properly describe the mass-
relation without differentiating between He/C/Mg cores and including the effect of a thin
envelope.
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4. Conclusion

A model based on a relativistic free Fermi gas is constructed and tested for observational
data from 4 WDs and theoretical data for 20 WDs from the SDSS Data Release. Using
a fourth-order Runge-Kutta approach, parameters such as density, radius, and mass are
found computationally and plotted with the above mentioned points overlaid for compar-
ison. The resulting graphs for density against radius for a single WD and mass against
radius for all WDs re-confirms the underlying theory outlined in the introduction. Using
a simplified approach, the Chandrasekhar mass and functional form for He/C/Mg and
Fe core WDs is obtained, yielding 1.44 ± 2.22−10M� and 1.24 ± 2.22−10M� respectively,
matching previously documented values. Non-relativistic and extremely-relativistic limits
are also tested concluding that WDs are best described under the relativistic degenerate
gas regime.
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Appendix A: Relativistic Case

Within this appendix, under the assumption of a near relativistic gas, the derivation of
the equation of state used for this model is presented[15]. We aim to prove:

dP

dρ
= Ye

mec
2

mp

γ

(
ρ

ρ0

)
,

where,

γ(y) =
y

2
3

3(1 + y
2
3
)
1
2

.

The equation for pressure of our gas is,

P =
1

3
n < pv >=

1

3

∫ ∞
0

n(p)pv(p)dp, (11)

where number density as a function of momentum, p, is given by,

n(p) =

{
8π
h3
p2 if p < pF

0 if p > pF ,
(12)

and Fermi momentum, pF , is given by,

n =
8π

h3

∫ pF

0

p2dp =
8π

3h3
p3F → pF =

[
3h3

8π

ρ

µmu

] 1
3

. (13)

For a relativistic gas the energy can be recast in terms of the relativistic gamma factor
(different to the function γ(y)),(

mec
2
)2

+ (pc)2 = γ2(mec
2)2, (14)

which can be rearranged for velocity using γ = 1√
1−
(

v
c

)2 to give,

v(p) = c

[
1− 1

1 +
(

p
mec2

)2] 1
2

. (15)

Substituting this into (11) at the limit of Fermi momentum gives,

P =
1

3

∫ pF

0

8π

h3
p2pv(pF )dp. (16)
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Using chain rule, dP
dρ

= dP
dp

dp
dρ

to express this in terms of density yields,

dP

dρ
=

8π

3h3
p3Fv(pF )

dp

dρ

∣∣∣∣
pF

. (17)

Substituting (13), evaluating, and rearranging gives,

dP

dρ
=

1

3

ρ1/3

µmu

c

[
1

1 +
(
mec2

pF

)2] 1
2
[

3h3

8π

1

µmu

] 1
3

. (18)

Using the relation pF ∼ p
1
3 , therefore pF

mec2
∼ ρ

ρ0

1
3 , we arrive at the required form,

dP

dρ
= Ye

mec
2

mp

y
2
3

3
(
1 + y

2
3

) 1
2

, (19)

where y = ρ
ρ0

.

Appendix B: Non-Relativistic Case

For the case of a non-relativistic gas model, the velocity becomes the classical v(p) = p
me

,
resulting in the following equation for pressure:

P =
1

3

∫ pF

0

n(p)
p2

me

dp. (20)

Following the same procedure as for the relativistic case, we arrive at,

dP

dρ
= Ye

mec
2

3mp

(
ρ

ρ0

) 2
3

. (21)

By similar method as shown in section 2.1, the following can be attained:

dM

dx
= 3x2q, and

dq

dx
= −Dq

1
3M

x2
, (22)

where the constant D is given by,

D =
4πGR2

0ρ0mp

Yemec2
. (23)
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Appendix C: Extremely-Relativistic Case

For the case of an extremely-relativistic gas model, the velocity becomes the speed of
light, v(p) = c, resulting in the following equation for pressure:

P =
1

3

∫ pF

0

n(p)pcdp, (24)

Following the same procedure as for the relativistic case, we arrive at,

dP

dρ
= Ye

mec
2

3mp

(
ρ

ρ0

) 1
3

(25)

Similarly, the following can be attained:

dM

dx
= 3x2q, and

dq

dx
= −Dq

2
3M

x2
, (26)
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Appendix D: Mass-Radius Relation

The method for constructing Fig. 2, the main outcome of this project, is detailed below.
An array of core densities ranging from 10−4 to 1012 is created and cycled through, with
the final value where the density tends to zero at the surface being plotted to give the
shape in Fig. 2 (with inverted axes). Below is a graphical example of the process for a C
core.

Figure 5: Method for constructing the mass against radius figure. A line is plotted from the
end points from each of these core density lines, and axis inverted to give Fig. 2.
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